The fact that biologic drugs are typically infused or injected poses numerous challenges, including discomfort for patients, instability under some storage conditions, and the generation of needle waste. Researchers have long sought a way to deliver biologics orally, and some teams have even reported progress toward the goal of delivering monoclonal antibodies in coated tablet forms. Now, researchers have reported in Nature Medicine that a luminal unfolding microneedle injector could be a feasible delivery device for biologic drugs like insulin.
The fact that biologic drugs are typically infused or injected poses numerous challenges, including discomfort for patients, instability under some storage conditions, and the generation of needle waste. Researchers have long sought a way to deliver biologics orally, and some teams have even reported progress toward the goal of delivering monoclonal antibodies in coated tablet forms. Now, researchers have reported in Nature Medicine that a luminal unfolding microneedle injector could be a feasible delivery device for delivering drugs like insulin.
The researchers, in a study funded by Novo Nordisk and the National Institutes of Health, developed a capsule that can carry insulin—and potentially other biologics—into the small intestine, where the capsule breaks down to reveal dissolvable microneedles on 3 folded arms. These needles attach to the intestinal wall and release the drug.
To allow the capsule to reach the small intestine, the researchers coated it with a polymer that can withstand stomach acidity until it reaches a pH of approximately 6.
Each of the arms, which are designed to break apart in order to reduce the risk of intestinal blockage, is covered with patches of 1 mm microneedles that are able to penetrate the topmost layer of the small intestine before they release the drug and dissolve.
In ex vivo human studies and in vivo swine studies, the capsule was demonstrated to load a comparable amount of insulin into test subjects as an injection would, allowing for fast uptake into the bloodstream; in the insulin tests, when the capsule was activated, the injector provided faster pharmacokinetic uptake than a subcutaneous injection over a 4-hour period.
In swine, no blockages formed in the intestine, and the capsule’s arms were safely excreted.
"We are really pleased with the latest results of the new oral delivery device our lab members have developed with our collaborators, and we look forward to hopefully seeing it help people with diabetes and others in the future," said Robert Langer, ScD, the David H. Koch Institute Professor at the Massachusetts Institute of Technology (MIT) and a member of the Koch Institute for Integrative Cancer Research, in a statement.
Giovanni Traverso, PhD, assistant professor in MIT's Department of Mechanical Engineering and gastroenterologist at Brigham and Women's Hospital, added that "We can deliver insulin, but we see applications for many other therapeutics and possibly vaccines," Traverso says. "We're working very closely with our collaborators to identify the next steps and applications where we can have the greatest impact."
Reference
Abramson A, Caffarel-Salvador E, Soares V, et al. A luminal unfolding microneedle injector for oral delivery of macromolecules. Nat Med. 2019;25:1512-1518. doi: 10.1038/s41591-019-0598-9.
Biosimilar Market Development Requires Strategic Flexibility and Global Partnerships
April 29th 2025Thriving in the evolving biosimilar market demands bold collaboration, early global partnerships, and a fresh approach to development strategies to overcome uncertainty and drive future success.
Biosimilars Development Roundup for October 2024—Podcast Edition
November 3rd 2024On this episode of Not So Different, we discuss the GRx+Biosims conference, which included discussions on data transparency, artificial intelligence (AI), and collaboration to enhance the global supply chain for biosimilars and generic drugs, as well as the evolving requirements for biosimilar devices.
BioRationality: Commemorating the 15th Anniversary of the BPCIA
April 8th 2025Affirming that analytical characterization is often sufficient for biosimilar approval, minimizing unnecessary clinical testing, and enhancing FDA-led education to counter stakeholder misconceptions are key recommendations put forth in this opinion piece by Sarfaraz K. Niazi, PhD.
Exploring the Biosimilar Horizon: Julie Reed's Predictions for 2024
February 18th 2024On this episode of Not So Different, Julie Reed, executive director of the Biosimilars Forum, returns to discuss her predictions for the biosimilar industry for 2024 and beyond as well as the impact that the Forum's 4 new members will have on the organization's mission.
BioRationality: How Developers Can Expand Their Monoclonal Antibody Biosimilar Portfolio
March 24th 2025Monoclonal antibodies lead biosimilar approvals because of their large market size, well-defined regulatory pathways, and technological feasibility, whereas other biologics encounter development challenges but may see increased adoption as regulatory frameworks advance.
Review Calls for Path to Global Harmonization of Biosimilar Development Regulations
March 17th 2025Global biosimilar regulatory harmonization will be needed to reduce development costs and improve patient access, despite challenges posed by differing national requirements and regulatory frameworks, according to review authors.